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Abstract—Surface diffusion is one mechanism by which surfaces roughen during high temperature
processing of semiconductor materials. Here, the free energy of an elastic crystal is assumed to be
the sum of the elastic strain energy and the surface energy, and these two quantities determine the
chemical potential for mass transport by surface diffusion. A gradient in chemical potential along
the surface provides the driving force for diffusive mass transport which tends to lower the overall
free energy of the system. These concepts are applied in considering the transient evolution of
waviness of a nearly flat surface in a highly strained elastic solid. In particular, the three-dimensional
problem of growth or decay of an initial slight depression in a nominally flat surface is studied by
solving the mass transport equation. The process can be described in considerable detail by adhering
to an assumption that the amplitude of surface fluctuations is small.

1. INTRODUCTION

A characterizing feature of a homogeneous elastic body is that there is a well defined
reference configuration to which it returns when all applied loads are removed. While
typically viewed as being immutable, there are circumstances under which the shape of the
bounding surface of the body in this configuration can change over time as, for example,
in condensation/evaporation or diffusion processes. Condensation and evaporation are
physical processes central to making high quality semiconductor materials for mic-
roelectronic applications. Furthermore, many temperature cycles are often involved in the
various steps required for manufacture of complex devices. The focus here is on the
particular change-of-shape mechanism of mass transport by surface diffusion. The dis-
cussion is limited to cases where any mass rearrangement is coherent, so that there is a well
defined reference configuration at any time. The discussion will also be limited to processes
with no net gain or loss of mass.

Mass transport by stress-driven diffusion is typically slow, and it can occur to a
significant degree only when the process under consideration has the features of relatively
high stress, high temperature and small size scale. These features are characteristic of
strained-layer semiconductor material systems, of course, for which the magnitude of stress
can exceed 1 GPa, the materials are grown or processed at temperatures of 500-600°C, and
submicron physical dimensions are typical. Such systems provide the basis for the present
discussion.

The materials under consideration are deformed, in general, and are always in mech-
anical equilibrium. They are not necessarily in thermodynamic equilibrium, however, so
they evolve in time in such a way as to decrease the system free energy. The surface field
representing the tendency for the system to change the shape of its reference configuration
is the chemical potential field (Herring, 1953 ; Gibbs, 1928). Under circumstances for which
this change can arise only through mass transport over the surface of the material, the
chemical potential at a point on the surface is defined as the increase in Helmholtz free
energy (isothermal potential energy) of the system due to the addition of one atom at that
point on the surface at fixed local strain. The basic idea is that, if the chemical potential is
lower in some region than in an adjacent region, atoms will diffuse toward the region of
lower chemical potential, thereby lowering the free energy of the system. In general, material
tends to diffuse against the chemical potential gradient along the surface. It must be
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recognized that the chemical forces involved are orders of magnitude greater than the
mechanical forces. Nonetheless, it appears that stress can play a role in diffusion in cases
where the gradients of chemical forces are very small. A development of concepts relevant
to crystal growth is provided by Tsao (1993) and various surface diffusion issues have been
considered by Rice and Chuang (1981), Mullins and Sekerka (1985), Leo and Sekerka
(1989) and Gurtin and Struthers (1990).

The discussion proceeds in several steps. First, the chemical potential is defined as a
function of position on the surface in terms of deformation and surface shape, under the
assumption that the Helmholtz free energy of the system can change only as a result of a
change in net surface area or net elastic strain energy of the material. Chemical potential
variations were examined by Mullins (1957) in the absence of stress, and he showed that
the flat surface shape is stable under small perturbations in shape as long as the surface
energy had a positive value. In the presence of stress, it can be shown that the elastic energy
of a body with a flat surface always diminishes if the surface becomes wavy (Freund and
Jonsdottir, 1993). Thus, this effect counteracts the effect of surface energy, and offers the
possibility that the flat surface shape is unstable under small perturbations in shape. The
case of periodic perturbations of an originally flat surface in a homogeneously stressed
material was considered by Asaro and Tiller (1972), Srolovitz (1989) and Grinfeld (1986,
1993) in order to determine the stability of the flat surface under fluctuations in surface
shape. The general finding is that the surface is stable if the wavelength of the perturbations
is smaller than some critical value, but unstable if the characteristic length is greater than
this value. The critical wavelength which discriminates between stability and instability is
proportional to the ratio of the local surface energy to the local elastic strain energy, as
must be so on dimensional grounds alone. The stability condition is now well known, and
similar applications to strained layers have been developed more recently (Spencer et al.,
1991 ; Freund and Jonsdottir, 1993). As an example of a fully transient phenomenon, the
time dependent evolution of a surface shape from a localized, nonperiodic defect under
plane strain conditions was considered by Freund (1994), and this study is extended here
to three-dimensional perturbations.

2. DIFFUSIVE SURFACE TRANSPORT IN A STRAINED SOLID

To consider the phenomenon of stress-driven mass transport by surface diffusion in
an elastic crystal, the bulk material and the material immediately adjacent to the surface
are viewed as different phases of the same material (Herring, 1953). The bulk material is
idealized as an elastic continuum and the “surface” as a pre-stressed elastic membrane
attached to the boundary of the bulk material. The thickness of the surface layer does not
enter into the formulation. In general, the surface and bulk phases exert tractions on each
other, they deform together and they are described by different constitutive relations.

Free energy of the material at constant temperature is assumed to exist in the form of
isothermal elastic strain energy, represented by U(g,,) and measured per unit volume of
material in the reference configuration with strain ¢;, and surface free energy, represented
by U,(¢}) and measured per unit area of surface in the same configuration with surface
strain ¢f’. Thus, the total free energy is

F(1) = f U (e,) dB+ J U, (&) dS (m)
B s

where B is the volume occupied by the bulk phase and S is the surface of this volume, as
shown in the sketch in Fig. 1. The reference configuration is that configuration for which
the bulk phase is totally stress free, which is usually not a realizable state without application
of external loading. The constitutive relations for the bulk material and surface material
are contained in the definitions of U and U,, respectively. The time rate of change of free
energy due to change in the shape of the free surface described by the local normal velocity
v, 18
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Fig. 1. Schematic of a material with a free surface which changes its shape over the course of time.
The local normal velocity is v,.

. oU U,
F)=| =dB+| Uv,dS+ *dS— | kUw,dS (2)
g Ot s s Ot s

where k = Kk, + K, is the sum of the local principal curvatures of the surface, which is twice
the mean surface curvature. According to the sign convention adopted, curvature is positive
at a point if the center of curvature is in the direction of the outward normal »; to the
surface S. The interpretation of the various terms in this result is relatively straightforward.
The first term accounts for changes in the deformation at a bulk material particle as time
goes on, the second term accounts for local changes in the instantaneous amount of bulk
material involved, the third term accounts for the deformation of the free surface, and the
last term accounts for local changes in the amount of free surface. It is assumed in writing
(2) that no exchange of energy with the external world takes place. Thus, the instantaneous
rate of work being done on the bulk phase must be equal but opposite to the instantaneous
rate of work being done on the surface phase. In other words, the sum of the first and third
terms in (2) is necessarily zero. Thus, the rate of change of free energy reduces to

F) = f [U—xU]v,dS. (3)

The product v,dS can be interpreted as the atomic volume of the material, say Q, times the
number of atoms being added per unit time to the area dS. Consequently, the local chemical
potential for the surface, viewed as a function of position over the surface, is

x = [U—xU]JQ. “4)

Mass diffuses along the surface in response to a local gradient in chemical potential.
The mass flux j is given by

D,c,
kT

i= Vst )

where D; is the surface diffusivity, c, is the concentration of diffusing species (often taken
as the surface density of atom sites or some fixed fraction of this density), k is Boltzman’s
constant and 7 is the absolute temperature. The operator Vis the interior gradient operator
in the surface S. If e, and e, are any two vectors tangent to the surface at a point, with
e, "¢, = 0, then j- e, is the number of atoms moving along the surface in the direction of e,
per unit time per unit distance in the direction of e,.

Conservation of mass at each point along the surface requires that the normal velocity
is proportional to the divergence of the local surface flux. In the present context,

SAS 32-6/7-0
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D.c

v, = —QVg'j= T

V. V,[U—-xU,]. (6)

Thus, given the elastic strain energy density along the surface, the local curvature dis-
tribution along the surface, and the surface energy density, (6) yields the normal velocity
of the surface. Note that U depends on the stress induced by the action of the surface
tension, as well as the action of any applied loads.

If attention is limited to a surface which is nearly flat, the general expressions simplify
enormously. Suppose the surface S is defined with reference to a flat surface with interior
rectangular coordinates x, y. The z direction is normal to this flat surface. Then a nearly
flat surface can be specified by giving its z coordinate as a function of position x, y at any
time ¢, say z = h(x, y, t). The surface is “nearly flat™ if

VR, « 1 (N

for all time. If it is further assumed that the surface energy does not change significantly
from its reference value y for the flat surface, then the surface evolution equation (6) takes
the form

D,c.Q?
h.:(X,ys [) =TTV2[U(X,J/, t)_yvzh (xsy’ t)] (8)

where V2 = %p/0x*+ 6*p/0y* is the two-dimensional Laplacian operator in the x, y plane.
This is the partial differential equation of primary interest here. The task which must be
completed prior to searching for solutions to (8) is to establish the way in which U depends
on A. This is done in the next section.

3. STRAIN MODIFICATION DUE TO SLIGHTLY WAVY SURFACE

Consider an isotropic elastic body with a flat, traction free surface. A Cartesian
coordinate system is introduced with the origin in the surface and the z direction
coinciding with the direction of the outward normal vector to the surface. The body is
assumed to be strained homogeneously due to remotely applied loads. For the purposes of
this discussion, it is assumed that the surface is strained isotropically, so that
£.:(x,3,0) = ¢,,(x,y,0) = & initially, where ¢, is a (positive or negative) constant; this
implies a remote state of stress for which the only nonzero components of stress are
Oy = 0,, = 6o = 2uee(1+v)/(1 —v) where u is the elastic shear modulus and v is the Poisson
ratio. More general initial uniform strain or nonuniform strain arising from subsurface
inhomogeneities such as dislocations, misfitting inclusions or other strain producing features
can be taken into account by following the same general approach. However, this additional
level of complexity is not needed here.

Suppose that the material is coherently rearranged so that the stress free shape of the
surface becomes slightly wavy. The new shape of the surface is given by the function # (x, y),
the distance of the new surface measured from the initial plane surface. (The time parameter
plays no role in the discussion of this section and it is suppressed.) The strain distribution
will be modified from its original uniform value due to the waviness of the surface, and this
modification can be easily calculated for any 4 (x, y) provided that \/h%+h%, « 1. To see
more clearly the quantity which must be determined, consider the strain energy along the
surface for the case when a uniform initial strain ¢,, = ¢,, = &, &,, = 0 is perturbed by a
strain Ag;; due to surface waviness. The strain energy density along the traction free surface
is then
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Fig. 2. Schematic showing the method of construction of a wavy surface by addition of blocks to

an initially flat surface.

U = (1 ﬁ\’) [(80 + AGX\‘)Z + (80 + Ag”_)z + ZV(SO + Agxx) (80 + Ag)'y)] + ZHAE%\
2u(1 : A Ag,,
~ #( + v)'BO 1 Exx 8” — U() +AU (9)
(1-v) €

to first order in variations of the strain. Thus, the quantity to be calculated is AU which
results from the surface fluctuation 4 (x, y).

The viewpoint is adopted that the change in shape is effected simply by adding and
subtracting thin blocks of mass from the initial flat surface. This is illustrated in the sketch
in Fig. 2. The initially flat material is strained an amount &, along its free surface. The
blocks are then added (or subtracted) with this same strain. For example, the block located
by coordinates x=¢, y=n must be added with a force along its sides of
2ueoh (£, 1) (14 v)/(1 —v) per unit length in the coordinate directions to maintain this strain,
whereas the next block at x=¢+A¢ y=»n must be added with a force of
2uech (E+AE ) (14+v)/(1—v) per unit length along its sides. For a smooth surface,
h(£+ A¢,n) must be interpreted as h (&, n) +h A&, n) AZ. As long as the externally applied
forces are applied to each block, the strain is still uniform everywhere. The removal or
cancellation of the external forces, necessary to satisfy the condition of zero surface traction,
induces a strain field in the material, however, and this is the change in strain associated
with waviness of the material surface. Essentially, for the interface shared by the two blocks
shown in Fig. 1, this strain field is the field of a concentrated tangential surface force of
magnitude

1+v

oh
Pi(&) = 2usy (1—_;>%;(é,n)Aé (10)

acting in the x direction per unit length in the y direction. Generalizing to a two-dimensional
array of such blocks for the three-dimensional problem under consideration, the change in
strain in the material appearing in (9) is given by

AU (x,y) = U, ¢dy (11

1+vr J (= Dh (& + O =nhEm)
wdoe =T+ (=)

where the elastic field for a concentrated, tangential surface load on an elastic half space
has been incorporated. This is commonly known as the Cerruti problem in elasticity. More
formal discussions of this general issue have been presented by Gao (1991) and Wu (1994).
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4. TRANSIENT EVOLUTION OF SURFACE SHAPE

The results of the foregoing sections are now combined to analyse an initial value
problem for surface shape. The body is again assumed to be a half space subjected to an
isotropic tension or compression in a direction parallel to the free surface. Initially, the
surface is nearly flat except for a small fluctuation in shape in the form of a local depression.
The shape of this imperfection is described by some function

h(x,.0) = h(x, ) (12)

where A,(x, y) - 0as,/x*+3* — o0. Attention here is limited to the case of imperfections
with two-fold reflective symmetry, that is, A,(x, ) = A (x, —y) = h;(—x, y). The surface is
assumed to evolve according to the partial differential equation (8), and a solution of this
equation is sought for 7 > 0.

The equation is most conveniently addressed when expressed in terms of non-dimen-
sional variables. These are denoted by the same symbols as the corresponding dimensional
quantities but with an asterisk subscript. The normalizations used are

U Uo\' 7D, U, U,
= —, = —_ _— b = -, = h— 13
U* Uo s t* t< ')’ > kT 3 Y* X '}’ h* _y ( )

and similarly for other parameters with the dimension of length. In terms of the non-
dimensional parameters, the surface evolution equation becomes

ch ,
?*(x*sy*, ty) = VidUs(Xs5 Yo [*)_Vih*(x*,)’*, )] (14)
Ol x

where V3 is the Laplacian operator in terms of non-dimensional coordinates in the flat
reference surface. This equation is solved subject to the initial condition

ha (X, Y4, 0) = h* (x4, y4) = Mi(x, ) Us [y (15)
and the asymptotic behavior
Pa(Xas Yas 14) > 0 a8 (/X34 pi— 0. (16)

This equation is readily solved by means of Fourier transforms. For symmetric surface
fluctuations, which is the case being considered here, the real Fourier cosine transform can
be used. The solution then has the representation

Ba(Xg, Vi 15) = J J i H(o, B, ty) cosaxy cos fy, dadf (17)

0 0

where H is the time dependent spectral density function for the surface shape. Substitution
into the governing equation (14) and an interchange of order of integration yields the
condition for determining H («, f, t,) in the form

0H
gt—*(m B.ts) = —w(a f) H (2 B 15), oo f) = (@ +57)°72 [( +57)"? =2(1+v)].  (18)

The solution is
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a(p)
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0.0 0.5 1.0 1.5 20 25 3.0

Fig. 3. A plot of the function w defined in (18) as a function of p = \/xz + B* for v = 0.3. The local
minimum occurs at 3(1 +v)/2.

H (o, B, t4) = H, (. pye " (19)

where H (x, B) is the double cosine transform of /4 (x4, ¥4). Thus, the solution of the partial
differential equation (14) subject to the initial condition and constraint on remote behavior
is

PaXx Vs 14) = j J Hy(a, B) e~/ cos ax, cos By dadp. (20)

0 Q

The result that the surface can be unstable is immediately evident in this result. The
function w(a, B) is positive for sufficiently large values of o>+ 2, but there is always a circle
of radius 2(1+v) in the plane of the transform parameters «, § inside of which w(e, ) < 0.
This function is plotted in Fig. 3 versus p = ./a? + 2. Consequently, any portions of the
spectral density H; (o, ) of the initial data inside this circle will grow in magnitude as time
increases. The precise way in which this growth occurs depends on the detailed shape of
the initial imperfection, so a specific case is considered next.

Before proceeding, it is worthwhile to note the general uncertainty about the actual
values of the physical parameters which appear in this calculation, particularly concerning
the estimates of time scale. The physical length scale over which these effects can be expected
in the processing of semiconductor materials is roughly in the range of wavelengths between
about 10 nm and 10 um. Some guidance on the time scale is available from the discussion
of the kinetics of adsorbate atoms given by Zangwill (1988). He argues that the diffusivity
should depend on the absolute temperature 7 and it should have the Arrhenius form

D, = D,e T, Q1)

The activation barrier for surface diffusion E,, is thought to be about 5 to 20% of the
chemical binding energy, or about 0.5 V. The simplest form for the pre-exponential factor
D, is Aa’/4 where A is the natural frequency of vibration of the diffusing atom in its local
energy well, and a is the spacing between local well minima ; this estimate is based on a
random walk model. For silicon, @ ~ 0.54x 10~ m and y ~ 1 J/m?. Let A = 10"/s. The
chemical binding energy is estimated as E, = 2ya’, and the diffusion barrier height is chosen
as E,, = E,/10. For a modulus of 10" N/m? and a biaxial strain of 0.01, the strain energy
density U, is about 10° J/m>. The atomic volume for the diamond cubic structure is about
Q ~ 5/a*. If the concentration of diffusing atoms is chosen to be 1% of the surface atoms
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sites, that is, as ¢, = 0.01/a°, then these values of the parameters in (13) imply that a unit
of normalized time ¢, = 1 corresponds to a physical time of about 10 s at a temperature of
800 K.

5. AN EXAMPLE

As a specific example, suppose that the imperfection has the shape

hi(x,y) = — A e e = 2)

where A, a and b are parameters characterizing the shape of the imperfection, each with
dimension of length. When 4 > 0 this represents a smooth ellipsoidal depression in the
surface. For this case,

Asby

Hio f) = — Ay =~ e iehil (23)

where the length parameters have been normalized according to (13). Thus, the integral to
be evaluated is

Ay by
ha(Xae, Yoo 1) = — Ax a

e e
J J g~ @ Hbif) g -0l cog ox, cOS By dadB.  (24)
0

0

The integrand is smooth and rapidly decaying at remote portions of the integration domain,
so this double inverse transform integral can be readily evaluated numerically. However,
by converting to polar coordinates, one of the integrations can be done in closed form so
this coordinate transformation is incorporated.

The variables r,, 8 are used to represent the polar coordinates in the physical plane,
so that

Xy = 1 COSH, pg=r,siné. (25)
In the transform parameter plane, the polar coordinates are denoted by p, ¢ so that
o= pcosp, P =psine. (26)

The cosine factors in the integrand are then recast in the form (Abramowitz and Stegun,
1965)

1

COS oY 4 COS By = 5 €08 [ryp cos (0+ )] + % cos [ryp cos (0+ @)]

= Jo(rep) +2 Y (= 1)y, (r4p) cos 2kB cos 2k %)
k=1

where J,, is the ordinary Bessel function of the first kind of order m. The exponential part
of the integrand representing H, takes the form

e*%(ailsziﬂl) — e—)‘ipz(ui‘*-bi) ewgpz(ai—bi)coshp. (28)

When recast in this way, the integrand is no longer symmetric in ay and b, so, without
loss of generality, it is assumed once and for all that
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a-=b-=1l2

20"

Fig. 4. Profile of surface shape for ax = 1/2 versus normalized radial distance for axially symmetric
surface imperfection for six values of normalized time 7x.

ay > b,. (29)

Then, with the aid of the integral identity (Abramowitz and Stegun, 1965)

/2
J‘ e—ccos2¢coszk(p d(P — g(_ l)ka(C) (30)

0

for any non-negative constant ¢, where I, is the modified Bessel function of the first kind of
order k, the solution takes the form

a*zb* J‘ ‘ e_%pl(ai+bi)-—w(p)h {JO (r*p)lo (%pz (ai —bi))

0

he(rs. 0,1,) = — Ay

+23 Jzk(r*p)lk(;pz(ai—bi))Cos2k9}pdp. (31)
K=1

This form is fully equivalent to (24) but is somewhat easier to evaluate numerically.

The case of an axisymmetric imperfection, that is, the case of a = b which remains
axisymmetric as it evolves, is considered first. In the solution integral (31), each term in
the sum enclosed within the curly brackets is zero and I,(0) = 1, greatly simplifying the
computations. Numerical results representing the shape of the surface as a function of
normalized radial position rU,/y and normalized time ¢, are shown for a, = b, = 1/2, 2
and 3 in Figs 4, 5 and 6, respectively. It is clear that the initial exponential shape, given by
(22), quickly gives way to a shape which is oscillatory with distance from the center of
symmetry. Furthermore, a comparison of the three figures reveals that the characteristic
wavelength of the oscillatory shape appears to be about the same, namely, about three in
non-dimensional length units.

Still dealing only with the case of axisymmetry, the rate at which the oscillations
develop and the imperfection grows does appear to depend on the value of a. This is evident
from Fig. 7 which shows the depth of the surface fluctuation at the center point r =0 as a
function of time for a, = b, = 1/2, 2 and 3. For a, = 1/2, the amplitude at the center point
first decreases quite dramatically before gradually beginning to increase as time goes on.
For a, = 2 or 3, on the other hand, the amplitude at the center of the imperfection begins
to increase immediately at time 7, = 0 and it increases thereafter. The rate of increase
appears to be strikingly different according to the results in Fig. 7. This is indeed the case
for the relatively short time behavior. However, the corresponding long time resuits are
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Fig. 5. Same as Fig. 4 for asx = 2.

1 i aa=b.=3

............ e t. - normalized time

Fig. 6. Same as Fig. 4 for ax = 3.

h(0,0,t.)Uo/y

-3.0 —_ 1 Al n i S ' e i

0.0 0.1 0.2 0.3 0.4 0.5
t. - normalized time

Fig. 7. Amplitude of the imperfection along the axis of symmetry at » = 0 versus normalized time
for three values of initial imperfection size, as represented by as, showing short time behavior.
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a.=b.=1/2

h.(0,0,t.)/A.

-60 L
_80 -
_1 00 . 1 o 1 s s 1 " )
0.0 0.5 1.0 1.5 2.0 25

t. - normalized time
Fig. 8. Same as Fig. 7. except that long time behavior is shown.

shown in Fig. 8 where it is evident that the rate of increase is indeed the same for all values
of a,, a result that is readily established by examining the long time behavior of the solution
integral (31). The rate of growth of the fluctuation is approximately exp[27(1 + v)*4/32] as
ly = CO.

The reason for the behavior shown in Fig. 7 can be seen by considering H;(p), which
is the Fourier spectrum of the initial surface shape /,4(r4). The spectrum includes positive
wave numbers roughly in the range 0 < p < 2,/2a,. If a, is relatively small (large), then
the initial surface shape is narrow (broad), and the spectrum H,(p) is broad (narrow). If
the spectrum is broad, then as time increases from zero the large wave number or short
wave length contributions to the surface shape are suppressed by the term exp[— p*1] in
the integrand of the solution (31). This depression accounts for the early time decrease in
amplitude seen for a, = 1/2 in Fig. 7 and, to a lesser extent, for a, = 2. On the other hand,
if the spectrum is narrow then this time dependent exponential factor has no effect, as seen
in the early time behavior for a, = 3 in Fig. 7. As time becomes large, all shapes diverge
for long time at a rate determined by the behavior of the integrand near the critical wave
number p = 2(1+v) (Fig. 8).

Cases for which the imperfection shape is eccentric can also be considered in the same
way. An example is shown in Fig. 9 for a, = 3 and b, = 1.5, for an initial aspect ratio of
2. The dashed curves show the profile along the major axis (the x axis) and minor axis (the

1] a=3 b.=15 along minor axis
T p 1 2 4 5
~ L A1 1 ] —
R Iy At N
2 | ) T Sz
- rUo/g

~1

-2 along major axis

-3 -

Fig. 9. Profile of an eccentric imperfection with doubly symmetric shape along the major and minor
axes for the case of ax = 3, by = 1.5 for the initial time of t+ = 0 and for 7+« = 0.5.
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a.=3 b~=0.5

Xy -0 A
-2

-3

OQ

Fig. 10. One quadrant of the full surface shape for the case illustrated in Fig. 9 for ¢+ = 0, showing
the initial imperfection in the nearly flat surface.

y axis) at t4 = 0, and the solid curves show the surface profile along the same axes for
ty = 0.5. The two sets of profiles are shown on the same scale. The general forms of the
profiles exhibit the same features already noted for the case of axisymmetry. In addition, it
appears that the aspect ratio of the profile is also increasing as time increases. The full
surface shapes for this case are shown in Figs 10 and 11. Because of symmetry, only the
quadrant x,y = 0 is shown, for both ¢z, = 0 and ¢, = 0.5. The apparent sharpness at the
root of the imperfection in Fig. 11 is due to the coarseness of the mesh of points at which
surface height has been calculated. The region 0 < x, y < 1 near the root of the imperfection
is shown expanded and with a much higher density of mesh points in Fig. 12; it is evident

that the root is still flat but the shape has become generally sharper in profile than the
original shape.

aa=3 b'=0.5

htk‘kn‘\j ‘at“)! A.

Fig. 11. One quadrant of the full surface shape for the case illustrated in Fig. 9 for t+ = 0.5.
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Fig. 12. One quadrant of the root of the imperfection shown in Fig. 11 for tx = 0.5, illustrating that
the surface is still locally flat at x = 0, y = 0 although the overall shape appears to correspond to a
sharp root.
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